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A finite difference method is proposed to track curves whose
normal velocity is given by their curvature and which meet at differ-
ent types of junctions. The prototypical example is that of phase
interfaces that meet at prescribed angles, although eutectic juns-
tions and interactions through nonlocal effects are also cansidered.
The method is based on a direct discretization of the underlying
parabolic problem and boundary conditions. A linear stability analy-
sis is presentad for our scheme as well as computational studies
that confirm the second order convergence to smooth solutions.
After a singularity in the curve network where the solution is no
tonger smoath, we demonstrate “almost” secand-order conver-
gence. A numerical study of singularity types is done for the case
of networks that meet at prescribed angles attriple junctions. Finatly,
different discretizations and methads for implicit time stepping ate
presented and compared. @ 1995 Azademic Press, Inc.

. INTRODUCTION

I this paper we present numerical simulations for the motion
of phase boundaries in two-dimensional physical systems with
several phases, such as grain growth in crystalline structures,
lamellar eutectic growth and volume preserving mean curvature
tlow for binary mixtures. Our simulation is bused on the discreti-
zation of a system of nonlinear partial differential equations
which models the evolution of each interface. In this model,
the principal contribution to the normal velocity of an interlace
(or curve) is given by its curvature, Moreover, we allow the
curves to meet at several types of junctions. The first considered,
our main example, allows prescribed angles at triple junctiong
where three curves meet and at the boundary of the domain.
This mode! is used by material scientists in the study of the
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evolution of idealized grain growth {18]. In this case the triple
Jjunction angles are all 120° (for other angles see, e.g., [3, 22]).
Junctions modeling those found in lamellar eutectic growth are
also considered.

The nonlinear system that we use is the formal asymptotic
limit of a vector-valved Ginzburg—Landau equation with a
triple-well potential introduced in [ 1] to model physical systeimns
with more than two phases. In the limit, the curves representing
phase boundaries evolve by their curvature with prescribed
angles al the triple junctions which depend on the potential.
For a symmetric potential, the angies are 120° and this corre-
sponds to the model of grain growth. In the case of three curves
meeting at one point, the problem is given mathematically by
a system of 6 X 6 parabolic partial differential equations for
which short-time existence was proved [1] (the problem with
a junction ol more than theee curves and given angle conditions
is il-posed). Their result extends to networks of more than
three curves connecled by multiple triple junctions. In this
paper, we use a second-order linite difference method to com-
pute approximations to this parabolic system describing the
evolution of the curves. The discretization is based on a stag-
gered grid using straight forward second-order discretization
at the interior grid points. In order to handle the boundary
conditions we use an extrapolation of the interior grid points
up to second order in the actual boundary conditions, We show
second-order convergence to smooth solutions in computational
studies and perform a linear stability analysis for the junction
discretization using a novel energy technique, This last techni-
cal discussion is delayed to an appendix.

The short-time existence result of Bronsard—Reitich shows
that the above discretization is well defined until the parametri-
zation breaks down. As can be seen numerically, this occurs
when the length of one of the curves shrinks to zero. i.e., when
a geometric singularity occurs. This ‘‘singularity time'’ can be
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detected numerically and at that time we perform a “‘surgery”’
which depends on the physical system being modeled. This
coarsening process can then bhe continued until one phase is
left {we restrict ourselves to computations in convex domains).
At singularity time there are derivative singularities in our
parametrization of the curve network: A detailed numerical
study of the performance of the method through singularity
and surgery is presented, showing ‘‘almost”’ second order con-
vergernce. '

There are several numerical methods which have been re-
cently developed to simulate geometrical motions of curves
and surfaces. We refer to [4] for a survey of many approaches
to defining geometric motion of interfaces. More recently, there
has been some work in which a level-set formulation is intro-
duced to study the evolution of triple junctions [17]. There
have also been several discretized models developed more spe-
cifically for the motion of grain boundaries using the Potts
model (see [10] and references therein), vertex and boundary
dynamics models (see [14] and references therein), mean-fields
theories (see [6] and references therein) as well as the work of
Ceppi and Nasello [5]. Our method differs from these ap-
proaches since it is based on a direct discretization of the
evolution equation of each interface. Other authors [8, 7] have
proposed similar interface ‘tracking’’ methods for this problem
using heuristic arguments rather than a discretization of an
underlying set of equations. We present a detailed comparison
between the methods and demonstrate that our discretization
at the junctions is more accurate. We also present two more
efficient techniques for solving the systems arising from the
implicit time discretization of curve networks with junctions.
This problem is particularly suited to tracking because curves
can never cross and the domains we consider are convex so
curves cannot cross the domain boundaries. Tracking interfaces
that can cross in nontrivial ways is in general a much harder
problem (see, e.g., [20]).

We present the interface equations and discretization proce-
dure for the system corresponding to grain growth in the next
two sections. Then, we present simulations for several networks
to illustrate the type of singularities that can be ohserved. Two
physical models are considered: first one with three different
phases and then the case of grain growth in an isotropic material
in which each grain has its own lattice orientation and hence
there are as many phases as there are grains. We concentrate
on computations where the interfaces meet at the triple junction
with an angle of 120 and at the boundary of the domain with
normal angle. In this case, areas enclosed by curves obey the
Von Neumann—Mullins parabolic law (see Section 4.3 below).
Moreover, the total network length must decrease. We demon-
strate that our numerical technique approximates these laws
accurately. The short-time existence in [1} also applies to other
angle conditions and we extend our method to this case and
present some results. Following this, we present a numerical
convergence study for the method through several singularities.
Then, other spatial discretizations and methods for implement-

ing implicit time stepping are presented and compared. Finally,
the curve network ‘‘tracking’” ideas developed for the problem
of grain growth are applied to two other problems: a model
of lamellar eutectic growth and a non-local area preserving
network problem.

2. EQUATIONS OF INTERFACE MOTION

The case of grain growth, where interfaces move with curva-
ture motion and meet at triple junctions with specified angles,
is our first example of a curve network. For simplicity, we
describe the situation in which there are three phase boundaries
described by curves x/(o, 1) fori = 1, 2, 3, where o € [0, 1]
is a parameterization of the curve. The situation is shown in
Fig. 1. The three curves evolve normally according to curvature
motion. One choice that describes this motion (which is arbi-
trary up to any velocity in the tangential direction) is

xi= x4, 1xb], (1

since the projection of the RHS of the above equation in the
normal direction is equal to the curvature. At o = 0 the curves
meet the domain boundary of the problem at a normal angle.
To be more precise, let b(s) parametrize the boundary in terms
of an arc length parameter s. Then the junction conditions at
the domain boundary are given by

X0, = b(s'(0) (2)
for some s'(r) and
xh(0,0) - B'(s1(1) = 0, (3)
where the prime denotes differentiation with respect to s.

Finally, at o = 1 the curves meet at a common point with
given angles & between curves i and / + 1, i.e.,

FIG. 1.

A three curve network.
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(1, 0 = xX1, 0 = X1, D @)
and
1,0 XLy 1
Ha e (5)
2 3
XL, 0) | Ldl.D = cos # (6)

(1, 0] i1 0]

We refer to {(2)—(6) naturally as boundary conditions of the
network evolution problem (1) although only (2} and (3) are
associated with the domain boundary

3. DISCRETIZATION

In this section we present in detail the discretization proce-
dure we use to simulate (1)-(6). Our basic approach is to use
a staggered grid in ¢ and we shall denote the approximations
by capital letters, ie., X)) =~ x((j — $)h, 1) where & is the
grid spacing and N = 1/h is the number of interior grid points
for o € [0, 1]. As the notation above suggests, we consider
semi-discrete or method of lines approximations.

In order to write the discretized equations, we introduce some
additional notation. Let D, denote the second-order centered
approximation of the kth derivative, ie.,

IX,u = (Xjﬂ _Xj-i)IZh

.Xj = (Xj+1 —2X;+ Xi—l)/hzs

and let Dy and & denote forward differencing and forward
averaging, respectively:

X’ = (Xj+|
FX = (X5 + XML

~ X)/h

For later use, we note that due to the staggered grid, D, X, is
a second-order approximation of x,{j#) and FX; is a second-
order approximation of x{jh).

We now write down the discretization procedure. Equatlons
(1) are approximated at all grid points using standard differ-
ences,

DX

X': =,
X

N

where the dot denotes time derivative. Formally, these discrete
equations require values of X; and Xy, outside the computa-
tional domain. We shall use the boundary conditions to extrapo-
late the interior values X, and X, to the unknown exterior values
X, and X .. Next, we give the details of this procedure for the

boundary conditions at the domain boundary ¢ = 0 and the

junction o = 1.

3.1. Domain Boundary

We obtain an expression for X, by formally approximating
the boundary conditions (2) and (3) to second order,

FX) =8, (8)
where B' := b(s") is some point on the boundary and
DX T =0, )]

where T¥ = b'(s). These discrete boundary conditions have a
geometrical interpretation. In what follows, we omit the super-
script § since the same reasoning applies to all three curves.
Equation (8) can be rewritten as
Xy = 2B - X (10)
which geometrically means that X, is obtained by reflecting X;

through the (as yet unknown) boundary point B. The point B
is determined by substituting (10} into (9) to obtain

(X — b(s)) - b'(s) = 0.

Consulting Fig. 2, we see that B = b(s) must be the point on
the boundary of minimum distance to X,. This point is uniquely
determined if X, is close enough to the boundary. For instance,
if the boundary is the unit circle and X, has polar coordinates
{p, & then B = (cos 6, sin ). Having computed B we obtain
X, by reflection (10).

3.2, Junction Boundary

We begin as above by formally approximating the boundary
conditions (4)—(6) to second-order accuracy:

an

T=b’(s)

FIG. 2. Details of the implementation of the domain boundary conditions.
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FIG. 3. Details of the implementation of the triple junction conditions.

and
DXy D.X3
et N = cos @ 12
.xi DGl (2
D.X% D.X}
—_ . - 92
D.x3 ooxy (13)

As was the case at the domain boundary, these conditions have
a geometrical interpretation. Rewriting (11) like (10), we see
that X, is obtained by reflecting X4 through the unknown
point C. We substitute this fact into (12)-(13) to obtain

Al A?

SR
A
RS

where A’ = C — X}. The situation is pictured in Fig. 3. The
point C is a point for which the vectors A’ meet at angles @',
%, and 8 as shown in the figure. This point C is uniquely
determined inside the triangle 2. X},, X3, X3 if the angles in this
triangle are not too large (specifically, the angle at X} must be
smaller than the opposite junction angle 6°, etc.). This condition
is certainly true of the exact values xj if the step size h is
sufficiently small and is never violated in the computations
described below.

Using the notation of Fig. 3 and simple geometric formulas,
we find that

8 = tan"! sin §
4 sin /1 sin @' + cos &/

(14)

where § = @ — o The angle 8 is now known and using &'
and length /; the triangle £ X}, X%, C is determined completely.
Now C can be determined from X} and then the values X,
are obtained from X by reflection.

At this point, we have eliminated the values of the approxima-
tion X ouiside the computational domain in terms of values
inside using appropriate extrapolation. With these modifica-
tions, (7) is an ordinary differential equation involving only
interior values. Discretization of curve networks with many
curves and junctions is handled similarly.

The key to implementing the junctions here and in the more
complicated eutectic case described in Section 8.1 is to first
formally write down approximations to the boundary conditions
of the correct order involving extrapolated points and then to
use a geometric or algebraic interpretation to represent the
extrapolated points in terms of the interior points, Other discret-
izations of this problem are described in Section 6.

3.3. Time Stepping

To solve the system of ODE’s describing the approximation
of the phase boundary curves presented above, some time-
stepping technique must be used. To accurately solve this sys-
tem and easily identify points of singularity we use the explicit
method, standard fourth-order Runge—Kutta (4RK). Time steps
k are chosen so that the frozen coefficient parabolic problem
corresponding to (7) is stable. This is satisfied if we take

2
P

) n};n |Dy X2,

(13)

Note that if the length of any curve goes to zero, the time step
restriction becomes more severe. To minimize this difficulty
for singularity studies the grid is coarsened as the length of the
curve goes to zero. This is described in the next section,

1t should be noted that the use of 4RK is “‘overkill”’ for this
problem; i.e., it is 50 accurate that there is essentially no tempo-
ral error compared to the error from the spatial discretization,
However, a nice feature of (15) is that the step size k decreases
as the curve approaches singularity, allowing us to accurately
identify the singularity times (see Section 3.2). More practical
implicit time discretizations are considered in Section 7.

For now, we consider a fixed discretization away from singu-
larity times and consider the numerical convergence of the
proposed method.

3.4. Numerical Convergence Study for Smooth Solutions
We consider the evolution of three curves in the unit disk
with initial data
X, 0) = (1 — g, sinf(zwa)/4)
o, 0) = (1 — (—1/2,V3/2)
7, 0) = (1 — )(—1/2, —V3/2).
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Three Curve Evolution
T= 9.8089

Three Curve Evolution

1.0820

v

FIG. 4. Network used for the numerical convergence study at + = Oand ¢ = |,

The initial data and computed approximation at t = | are shown
in Fig. 4. Note that the perturbation on curve 1 is flattened and
that, since curves | and 2 form a convex shape, the area between
them will decrease further with time by the curvature flow,
Eventually, this area will disappear and the length of the curves
| and 2 will go to zero. We show how to handle this situation
and continue the computation in the next section.

For now, we consider the performance of the method at time
1. Since the exact solution is not known, we compare solution
values to those at finer grids to estimate the error e,

€y 1= “Xh - sz“.

where the subscript on X denotes the grid spacing used to
compute the approximation and the norm ||| is the discrete
maximum norm over all points of all curves. Note that linear
interpolation must be used to compare the pointwise values of
approximations at different grids since we use a staggered
grid. Successive error estimates can be used to estimate the
convergence rate p as follows

£y,
== g, 1= log, —.
P = Py 4] e

Estimates of the error and convergence rate at r = | are given
in Table I. Second-order convergence is clearly seen. A linear
stability analysis for the problem using an interesting new tech-
nique specific to this discretization is given in an Appendix.
Convergence rates after singularity time are examined computa-
tionally in Section 5 below.

3.5. Regridding

11

The “‘philosophy” of approximation we have chosen is to
pick a parameter £ that remains fixed throughout the computa-
tion and try to maintain at least one grid peint for every arc

length k along the discretized curves. In order to maintain
this property, we double the number of grid points in a curve
(refinement) when points get too far apart and half the number
of grid points (coarsening) when the curve gets shorter. Note
that the discrete equations (7) and corresponding boundary
conditions are actually independent of the choice of & so this
parameier can be kept constant essentially as a bookkeeping
parameter as the number of points discretizing a given curve
change in time. For each curve i we compute

v' = max |D X
I

# = min |D, X%
i

If ¢' > 4 then the curve is refined; i.e., the number of discrete
points on the curve is doubled and the values on the new refined
staggered grid are obtained by linear interpolation. If v < §
then the curve is coarsened; i.e, the number of points on the
curve is halved and values are again obtained by linear interpo-
lation.

The rules above basically ensure that there will be at least
one grid point for every 24 length with a maximum distance
between points of more than A/2. Refinement helps keep resolu-
tion in curves that are stretched and coarsening reduces the

TABLE 1

Estimated Errors and Convergence Rates
for Smooth Solutions

N=1h [ Pa
4 (1.3601e-2
16 0.9133¢-3 1.98
32 0.2311e-3 1.98
64 0.5818e-4 1.99
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Curve Evolution

T= D.e008

~

Curve Evalution

T= @.1589

FIG. 5. A discrete smoothing property.

time step restriction (15). Computational studies show that sec-
ond-order convergence for smooth solutions 1s maintained
through single refinement or coarsening. Studies showing the
performance of the method through many regriddings and sin-
gularities are described in Section 5.

The regridding described above is of “‘global”” type; if a
curve is locally deficient in points, the whole curve is refined.
However, for curvature motion with our parametrization this
is not a problem, as shown in the next section.

3.5.1. A Property of the Equations

We consider the evolution of a single curve x (attached at
both ends to the boundary) with piecewise linear initial data.

(1 —dd(—1, = 1)yV2
(or — DL, ~1)IV2

3 1
lfO'Sz

e, 0) = ifo>1

(16)

This is the kind of situation that occurs after a singularity is
detected and removed and the accuracy of our method applied
to this problem is discussed below. For the present, we wish
to show another property of solutions to Egs. (1). The discrete
solution at + = 0 and ¢+ = 0.15 with the above initial data is
shown in Fig. 5, where the grid points are marked. Note that
the spacing between the grid points becomes more uniform
with time. This is also true for curve networks away from
singularities and allows us to do global regridding as described
above since ]ocal distortions in the grid are smoothed out.

This property is due to the full parabolicity in the system of
Eq. (1). We compare (1) to the modified system

X = (fiﬁiﬁ n
DR S

where /4 is the normal vector. This system corresponds to that
studied i, e.g., {9, 11] to describe the evolution of single curves

(17}

by curvature motion. This system also describes curvature mo-
tion but is not fully parabolic. In fact, a linearization shows
that this system is of mixed type, parabolic in the normal
component and hyperbolic in the tangential component. A dis-
cretization of this system will not have the smoothing property
as above and may lead to theoretical difficulties when trying
to prove the well-posedness of the boundary conditions (2)—(6).

It is appropriate to mention here the technique in [24] where
tangential motion is introduced in the tracking points exactly
to maintain equal spacing in arc length. Unfortunately, this
technique cannot be used here due to the Dirichlet component
to the junction and domain boundary conditions.

3.6. Singularity Detection

Curves are never coarsened to fewer than two points. A curve
i that has been coarsened to two points and has w' < el is
scheduled for deletion and is removed. This conditien is de-
signed to give a second-order error (in /) in the computed
singularity time assuming the junctions have finite speed at
singularity. The parameter £ is chosen to be 0.1 in the rest of
the computations described in this paper. Computationally, we
see that the dependence of the singularity time estimates on
is negligible compared to the £ dependence.

Afteracurve is deleted, any remaining curves are reorganized
so that computation can be continued. The type of “‘surgery”
performed depends on the particular phase model under consid-
eration. The details for two models are given below.

4. SURGERY AND NUMERICAL RESULTS

The discretization in the previous section applies to the evolu-
tion of curve networks up to singularity time, when one or
more of the curves shrinks to zero length. At this point, informa-
tion about the physical system being modeled must be used to
be able to continue the computation. The details of this selection
are given below for two different phase models. We also demon-
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FIG. 6. A single node network for the three phase model.

strate that our method agrees with the derived area and length
laws for the case of symmetric angles at triple junctions. Finally,
we present some simulations with non-symmetric angles at the
triple junction and simulations in other physical domains.

4.1, Three Phase Model

The first phase model we consider is one in which only three
different phases (labeled A, B, and C) are present in the domain
and equal angles of 120° are imposed at triple junctions. This
corresponds to the case that the potential is symmetric as men-
tioned in the Introduction. As our first example, we consider
the evolution of three curves in the unit disk that separate
these phases. The initial data and computed approximations are
shown in Fig. 6. In this computation and the others depicted
in this section we take N = 16. We specify initial data by
giving initial node (triple or boundary junction) positions and
orientations. Then the curves are filied in by using a spline fit
through the node points and specified curve mid-points.

We now discuss the results shown in Fig. 6. At ¢ = 0.5 the
initial perturbation on the right curve has been significantly
reduced and the convexity of the region of phase A indicates
that its area will decrease further with time. Eventually, this
region disappears and the length of the two curves that bound
it will g0 to zero (at 1 = 1.396). In order to continue the
computation we perform the following physically motivated
surgery: we delete the two curves of vanishing length and
attach the end of the remaining curve normally to the domain
boundary. Some technical details are given in Section 4.1.1
below of the numerical implementation of the surgery. We call
this singularity of type 1 in what we conjecture is a complete
generic list of six singularity types shown in Figs. 7 and 8. We
continue the computation after surgery and as seen in Fig. 6,
the remaining curve will eventually disappear and be removed

{(a type 2 singularity as shown in Fig. 7) leaving no curves and
only phase C remaining in the domain.

The evolution of a network of curves with six triple junctions
is shown in Fig. 9. Here, the phase labels have been dropped,
but each region between the curves can be assigned uniquely
to one of the three phases (up to relabeling). Six singularities
are observed in the sequence 424252 using the notation of Figs.
7 and 8. We shall describe next the first singularity observed

Singularity
Type

Before

FIG. 7. Generic singularities for the three phase model involving the
domain boundary. Dashed lines show curves whose length is going to zero.
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Singularity

Before After

Type

FIG. 8. Generic singularities for the three-phase model that do not involve
the domain boundary. Dashed lings show curves whose length is going to zero.

and show how we use the information given by the physical
maodel under consideration to do the surgery. The first singular-
ity (att = 1.3428} is of type 4; 1.e., the interface which separates
two distinct phases shrinks to zero length. At this time, since
one phase is now on both sides of this unstable quadruple
junction, we join it by splitting the junction as in Fig. 8. The
other singularities are handled as in Figs. 7 and 8.

In order to observe the remaining generic singularity types,
we present the evolution of an eight-node network (Fig. 10}
and a four-node network (Fig. 11). The first singularity in the
eight-node network is of type 3, and in the four-node network,
a “‘bubble’” is squeezed off leading to a type-6 singularity.

We note that the generic singularity list conjectured in Figs.
7 and 8 allows for only one or two triple junctions to collide
at one time. It should also be noted that the surgery performed
in these computations is physically ‘‘reasonable’” but has not
been justified in a rigorous way. Numerical or asymptotic limits
of solutions of the original Ginzburg-Landau model [1] at
these singularity times should justify our procedure but such a
program has not been carried out.

4.1.1. Numerical Implementation of Surgery

We keep track of the changing topology of the curve network
using the following information: for each curve, the number
and positions of interior discrete points and the phases to the
right and left of each curve; for each curve end, whether the
end is attached to the domain boundary or the interior junction
it is attached to; for each interior junction, an oriented list of
incident curves. The number of interior points for each curve

is always kept to be a power of 2 for ease of regridding. Away
from the singularity times, the information about the curve ends
is used to obtain appropriate extrapolated values to be able to
update the interior points near the ends of the curves. When a
singularity is detected (i.e., a curve is scheduled for deletion
using the criteria of Section 3.6) the information listed above
is modified to reflect the changed topology of the network, We
give two examples below,

A type-1 singularity {(see Fig. 7) is characterized by two
curves that simultaneously satisfy the condition for deletion
and meet at a common junction at cne end and the domain
boundary at the other end. These curves are removed. The
remaining curve end that is incident on the common junction
is changed to the domain boundary type and the junction is
removed since it no longer has any incident curves. In this and
future time steps, the extrapolation needed to update the interior
points of the remaining curve will be done using the domain
boundary conditions.

A type-4 singularity (see Fig. 8) is detected when a single
curve satisfies the condition for deletion and this curve is con-
nected at both ends to interior nodes. This curve is deleted.
Using the right and left side phase information, the two pairs
of curves that need to be joined can be grouped from the
remaining four curves incident on the two junctions. These two
junctions are then removed. For each pair of curves, points are
put in to a common curve, after the curve with the fewer points
has been refined so that both curves have the same number of
points (27). The resulting curve will have 2°*' points (again,
this is convenient for regridding). In this and future time steps,
points near the old nodes will evolve as interior points on the
new curves. Derivative discontinuities will smooth out as shown
in Section 3.5.1. Other singularities are handled similarly.

4.2. Crystal Grain Boundary Model

In crystal grain growth, every crystal grain has a different
lattice orientation so every grain corresponds to a different
phase. We again consider first the symmetric case at the triple
junction. If we use this material model in our computations,
we must replace the surgery procedure 4 of Fig. 8 because this
would now join two different materials. Instead, we use a
surgery labeled 4* shown in Fig. 12, in which a new curve is
introduced between the two distinct phases with the appropriate
120° angle conditions.

A calculation of a network with six triple junctions using
this model is shown in Fig. 13. The same initial data as the
computation shown in Fig. 9 is used so the evolution of the
network will be identical up to the first singularity time (¢ ==
1.3428). Singularities of type 4*14*14*4*51 are observed in
this computation during the times depicted.

The singularity sequence 4*4*5 pear time 1.8 is too small
to see clearly in Fig. 13 and a blow-up (of factor 12.5) of the
network near these singularities is given in Fig. 14. Such small
scale multiple collapse of curves 1s common in the numerical
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FIG. 9. A six-node network for the three-phase model.
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FIG. 11.

tests we have done. The collapse sequence is reproducible using
finer grid resolution so we have confidence in its structure.

In the absence of boundaries, we conjecture that the generic
singularities in a network of grains are type 3 (the collapsing
lens from Fig. 8) and type 4* (where the curve neighbors are
switched as discussed above). This case was studied previously
in [7] but they obtain different results. Indeed, a similar figure
to Fig. 14 is shown in [7], where a symmetric collapse of a
four-sided grain to a lens and two more junctions is shown.
We believe this is a non-generic situation due to symmetric
initial data.

4.3. Approximation of Area and Length Laws

In the symmetric case, a phase region surrounded completely’

by n curves that join at triple junctions (i.e. a region not adjacent
to the domain boundary) has area A that obeys the Von Neu-
mann-Mullins parabolic law:

o
A —g(n — 6). (18)

This law is derived for the curvature motion case in [18]. We
compare the computed area (based on a polygonal approxima-

Singularity

Before After

FIG. 12. Singularity 4% for the grain growth model.

a.1628 G.178¢
g.2008 0.236¢

OJO%

A four-node network for the three-phase model.

tion of the curves) for the enclosed region of Fig. 9 to that
predicted from (18) {using the computed area as initial data
and the singularity times from the calculation to change n).
The two quantities are shown in Fig. 15 on the left graph and
are almost identical. Here, a less accurate computation with
N = 8 has been used to see any difference at all. The initial
flat portion of the graph corresponds to the times when the
region is enclosed by n = 6 curves and then the area decreases
when it is enclosed by four and then two nodes. An area en-
closed by seven or more curves will increase as seen in Fig. 10.

The total length of the curve network is also predicted to
decrease (at a rate equal to the total integral of the square of
the curvature over the network) and the computed values of
total length shown on the right-hand side of Fig. 15 satisfy this
property. Note that the relatively flat initial part of the graph
corresponds to the portion of the computation in Fig. 9, where
the lines are almost straight (i.e., have small curvature).

4.4. Extensions

The numerical method is easily extended to the case where
the angles at the triple junction are different from 120°. For
example, a computation with three curves meeting at angles of
160°% 140°, and 60° is shown in Fig. 16. The method is also
easily extensible to any convex domain. A computation with
three curves meeting at 120° angles in a square domain is shown
in Fig. 17. Finally, we note that the method is also easily
extensible to include anisotropic effects in the curvature motion
and non-normal incident angles at the domain boundary.

5. PERFORMANCE OF THE METHOD
AFTER SINGULARITY

After singularity time, curves are joined together to form new
continuous curves with discontinuous derivatives at isolated
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FIG. 13. A six-pode network with crystal grain boundary model.

points. The performance of the method in this situation is
shown below.

5.1. Convergence with Derivative Discontinuities

As a model for the behavior of the method after a singularity,
we consider the problem of a single curve with initial data (16).
Estimated maximum norm errors and convergence rates for
this problem are shown in Table II. These estimates and those
for similar computations with initial derivative discontinuities
in the interior of the curve or at the boundary show convergence
rates of “‘almost’’ second order. We speculate that the conver-
gence 1s of a rate less than second order but not by a factor of
h®, i.c., that the error behaves something like 4%/ log h|. We are

FIG. 14. A blow-up of the evolution of the network of Fig. 13.

currently looking for a model for this type of behavior that can
be analyzed exactly.

5.1.1. Other Discontinuities

Behavior at a singularity may introduce stronger discontinu-
ities than those modeled above as the following example shows.
The self-similar lens solution of the phase curve problem from
[18] is shown in Fig. 18 (the arcs are not quite circular, they
are rosette-like curves). Due to the area law described in Section
4.3, r(®) = VA0 — Ct for some constant C.

A singularity {type 5) occurs at § = rH0)/C and ai this time,
the speed of the triple junctions is infinite. Therefore the right-
hand side of (1) must be infinite. Numerical evidence suggests
that for the curves outside the lens (that remain after surgery)
the parametrization does not fail; i.e., |x,| stays bounded away
from zero. Therefore, the singularity must involve the blow-
up of the second derivative. Rather than examine in detail
the structure of the solutions with our parametrization in such
situations and then determine the expected performance of the

TABLE 11

Estimated Errors ¢, (and Convergence Rates p,) for the
Single Curve with Initial Derivative Discontinuity

N=1/h =004 t =010
16 0.4355e-2 0.3062¢-2
32 (.130ke-2 (1.74) 0.8979e-3 (1.77}
64 0.3622e-3 (1.84) .2517e-3 (1.83)
128 0.1009-3 {1.84) 0.6922e-4 (1.80)
256 0.2777e-4 (1.86) 0.1890e-4 (1.87)
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FIG. 15. Area and total length behavior of the six-node network.

method, we observe the numerical behavior directly. This is
done in the next section.

5.2. Convergence of Singularity Times

In order to evaluate the performance of the method through
multiple regridding and singularity times we consider the con-
vergence of the numerically determined singularity times. The
estimates for the six singularity times of the run shown in Fig.
9 are given in Table 1. Convergence in singularity times is
observed of “‘almost’” second order as discussed above. This

@ .00900 g.4000
9.8000 1680

=i,

FIG. 16. The evolution of a curve network with angies 160°, 14(° and
60°.

is also observed for many other runs,
the method.

giving us confidence in

6. OTHER DISCRETIZATIONS

In this section we construct other second order and higher
order discretizations of junctions to compare with the one
above. In addition we present other discretizations of the inte-
rior equations.

6.1. Third-Order Dirichlet Correction

Without widening the stencil for the staggered grid method
presented above, we can improve the approximation at the

T= @.000@ = 3.5000
T= 1.88024@ T= i.9508

A

FIG. 17, The evolution of a curve network in a square domain.




78 BRONSARD AND WETTON

1(t)

FIG. 18. A self-similar solution that goes to singularity.

domain boundary by replacing the second-order approximation
(8) by the third-order approximation

B=%Xu+%X|_%X2. (19)

Using the same approximation to the Neumann condition (9)
and reasoning as in Section 3.1 we discover that B must be the
closest point to

and X, can be found from B using (19). This amounts to a more
accurate ‘‘reflection’ at the boundary. A similar approach can
be taken at the triple junction. The resulting method is applied
to the smooth test problem described in Section 3.4. The approx-
imate errors and convergence rates are shown in Table IV.
As expected, the method still converges with second order
but the error size is much reduced (by a factor of 10 from the
original method—compare Tables 1V and I). This shows that
a significant part of the error comes from the boundary discreti-
zation. Unfortunately, the method above with the third-order
Dirichlet correction performs very badly near a singularity so
it cannot be used for anything but smooth solutions. It is not

TABLE ITi

Estimated Singularity Times {and Estimated Convergence Rate in
Singularity Times) for the Run Shown in Fig. 9

N First Second Third
8 1.3224571 1.3263752 1.4992721
16 1.3428338 (1.04) 1.3467354 (1.49} 1.5074870 (3.19)
32 1.3527337 (1.75) 1.3566085 (1.73) 1.5083897 (1.67)
64 1.3556852 (1.92) 1.3596308 (1.91) 1.50867366 (1.88)
128 1.3564617 (1.99) 1.3604571 (1.97) 1.50875070 (1.96)
256 1.3566571 1.3606710 1.50877046
N Fourth Fifth Sixth
8 1.5077970 1.5954315 1.7910395
16 1.5146238 (2.90) 1.6141944 (1.05) 1.8202979 (1.39)
32 1.5155387 (1.32) 1.6208964 (1.71) 1.83L1081 (1.81)
64 15189041 (1.62) 16229145 (1.87) 1.8341004 (1.83)
128 1.5160233 (1.73) 1.6234531 (1.95) 1.8350557 (1.84)
256 1.51605915 1.6235906 1.8352974

TABLE IV

Estimated Errors and Convergence Rates
for Smooth Solutions Using Third-Order
Dirichlet Correction

N=1/h - o7
3 : 0.3632e-3

16 0.9991¢-4 1.86

32 0.2471e-4 2.02

surprising that a higher order method would fail when deriva-
tives in the solution become singular.

6.2. A Regular Grid Method

We now consider a regular grid approximation of the curve
x, i.e., X; = x(jh). At the domain boundary we can now approxi-
mate (2) directly by

X0=B!

where B is as usual an unknown point on the boundary, We
approximate (3} using a second-order one-sided approximation

(—3X,+2X,-§By-T=0,

where T is the boundary tangent at B. Using the same procedure
as it Section 3.1 we combine the two equations above to con-
clude that B must be the closest point on the boundary to

_%Xz +%X1-

A similar approach can be taken for triple junctions. This dis-
cretization was first considered in [8]. We apply this boundary
discretization to the smooth caleulation of Section 3.4, The
results are shown in Table V.

Again, the convergence is second order as expected. How-
ever, the error sizes are much larger than for the staggered grid
method originally described. We could have predicted this since
the local truncation error for short centered difference approxi-
mations of the Neumann condition for the staggered grid is
smaller by a factor of § than that for second-order ane-sided dif-
ferencing.

6.3. Interior Discretization

Other authors [8, 7] do not discretize a term like the right-
hand side of (1) but rather use a geometrical approach to curva-
ture motion: Considering a point and its two neighbors, a unique
circular arc can be constructed, giving an approximation to the
curvature as well as the normal direction, It can be shown that
this discretization is a second order accurate approximation of
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TABLE V

Estimated Errors and Convergence Rates
for Smooth Solutions Using the Regular
Grid Discretization

N=1/h ey Pa
8 0.2496¢-1
16 0.4293e-2 2.54
32 0.8922¢-3 2.27

a curvature motion law but one like (17} which is only partially
parabolic. As discussed in Section 3.5.1, the partial parabolicity
leads to poor redistribution of grid points. The method in [7]
introduces *‘artificial’’ tangential motion or point redistribution
to overcome this problem. Such an approach is computationally
intensive and can lead to excessive smoothing from the process
of discrete redistribution [24].

7. IMPLICIT TIME STEPPING

In order to avoid the excessively small time steps (15) of
explicit time-stepping methods we now consider implicit tech-
niques. For simplicity we explore a backward Euler time-step-
ping scheme, although the structure of the resulting system of
equations is identical for schemes like Crank—Nicholsen or
higher order multi-step methods. The time step k is taken to
be constant and a second superscript n denotes the time level,
i.e., X;" approximates x'((j — Dk, nk). We consider an introduc-
tory problem with three curves and symmetric angles in a disk.
Given the position of the three curves at time n we find the
positions of the curves at time level n + 1 by solving the system

G =, 20y
where
DX
L4Xy=X— - X"
YXy=X kl |X|2

The extrapolated points at the triple junction at time level n +
1 satisfy (11)—(13) and the extrapolated points at the domain
boundary satisfy

X

X+ X —2—
0 1 lxl

=0

for all curves. We consider three techniques for solving this
system of equations and predict the performance for large net-
works. The methods are applied to a first step of the example
network described in Section 3.4.

7.1. Newton Iteration with Sparse Matrix Solver

We perform simple Newton iterations beginning with the

curve positions from the previous step:
XU = XU — [V, G(XY]1G(XD), 20

The single superscript (j) on X denotes the iteration level now.
The matrix V,*4(X) can be written symbolically as

Dl (2kD2X)D1X " Dl
DX DXt

I-k

where / is the identity matrix. This is equivalent to the implicit
discretization of a convection diffusion equation as the linear-
ization of (1) suggests. This matrix is (2 X 2) bleck tridiagonal.
The domain junction terms do not widen the diagonal structure
but the triple junction boundary terms link all the unknowns
at the ends of the curves. We use an extension of the Thomas
algorithm (described in, e.g., [26]) to reduce the problem to
three block tridiagonal solves per curve followed by a 6 X 6
system to determine the update to the extrapolated points at
the triple junction for the three curves. Convergence is quadratic
and requires only a few iterations (=4 for an error less than
107%) for the example described in Section 3.4 for a wide range
of values of & and £.

For a network with K junctions the same technique can be
used, One, three, or five block tridiagonal solves must be done
per curve (depending on whether it joins zero, one, or two
triple junctions, respectively) followed by the solution of a
6K X 6K system representing the coupling effects of the updates
to the curve positions through the junctions. While this particu-
lar technique (the extension of the Thomas algorithm) may not
always be the most efficient way to solve the system resulting
from a given network, it is a convenient way to show that the
sparse solution process will be a combination of local block
tridiagonal solves with coupling through the junctions. The part
of the systemn corresponding to junction coupling is sparse but
not banded and can be large since large networks are of interest
in statistical studies of grain size [8). Since the cost of solving
this part of the problem may dominate the total solution time,
we consider two alternative methods for solving the system
(20} that update the positions of single curves locally and then
update junction positions.

7.2. “Junction’’ Iteration

The linear system of equations above would be easy to solve
if the junction positions were known. We modify the method
above to use Dirichlet conditions at triple junctions based on
the junction centers at the previous iteration; i.e., we use

L(j+1) B+L
XG0 4 X

= CW
2 C

to eliminate the extrapolated value Xi{{" from the stencil,

where CY is the junction center predicted from the previous
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TABLE VI

Number of Iterations to Convergence for a Single
Time Step & Using Junction Iteration

N=1/h k=001 k=004 k=016
8 12 28 61
16 25 58 124
32 33 120 252
64 108 243
128 219

step. Computing X¥*" is now a simple block tridiagonal solve
for each curve. The new values X3 for i = 1, 2, 3 can be
used to find a new curve center C¥*" as described in Section
3.2. This method is essentially the solution technique used in
i8], except that they use the regular grid discretization described
in Section 6.2,

This technique is applied to the example from Section 3.4.
Convergence is linear and the number of iterations required to
get an error of less than 107% (to an accurate solution from the
sparse Newton technique) is shown in Table VI. Note that
the number of iterations required grows like £'°N. In order to
understand this behavior we study a simple model below.

7.2.1. Model of Juncrion Iteration

Junction iteration essentially involves replacing discrete Neu-
mann conditions (12)-(13)} by discrete Dirichlet conditions
((11) with C known) and then updating the Dirichiet conditions
using the extrapolation formula. The convergence is limited
by the linear convergence of this procedure not the quadratic
convergence of the nonlinearity. Also, we expect that the meth-
od’s performance should only depend on the nature of the
solution near the boundary. Therefore we consider the following
simple linear constant coefficient model in a half plane:

Consider a regular grid finite difference discretization of

W=t X €0, ) w0, =0
with backward Euler time stepping. Using the notation of the
previous sections, the discrete problem is
(I — kDU = pn. (22)

We use a second-order one-sided approximation of the Neu-
mann condition

(—2 U+ 2U, —3Uh=0. (23)
Normally, the expression {23) would be incorporated into the
boundary stencil of (22) but to model the junction iteration we
compute iterated approximations £/ to U"*' as follows:

1. Set U = Uz,

2. Compute U*" for ! = 0 by solving (22) with Dirichlet
data UY".

3. Update U, using the extrapolation formula (23), i.e.,

G 4 pi(j+D) 1 prlith
Ugt =4 U~ Uy,

4. Continue 2-3 until the desired accuracy is reached.

We will show that the iterations converge for all 4 and £.
The real question is whether the map U’ — UY™" is contracting
and at what rate. To investigate the contraction rate we can
ignore the data term U in (22) by considering differences of
successtve iterations. Suppose now Uy’ = a. We solve (22)
with zero data and Dirichlet data I/, = g to obtain

U, = ae ™,

where cosh 8 = 1 + #*/2k and 8 = 0 (verify by direct substitu-
tion). By extrapolation (step 3 above) we find that

Uit = U fe®),

where f(x}) = & — 3’ is the contraction rate. Since x €
(0, 1) we have 0 < f < | so the method converges for all
choices of A and k. For A%k small, 8 =~ WV and f=~ 1 — %
h/Vk. This expression confirms the numerical prediction of
the performance of the junction method above: convergence to
a fixed accuracy requires O(N V) iterations (recall N = 1/h).

The use of a staggered discretization leads to f{x) = x and
f=1- AV (similar asymptotic character but with a better
constant). With Crank—Nicholson time stepping this becomes
f=1- h/(2\/E) again with the same asymptotic character. A
similar analysis can be performed on junction-type iterations on
vector parabelic problems with mixed Neumann and Dirichlet
conditions under suitable assumptions on the well-posedness
of the boundary conditions and the stability of the discrete
schemes used.

7.3. Multi-Grid Iteration

The junction iterations above can be thought of as a block
iteration with blocks consisting of the interior points of each
curve and the extrapolated points for each junction. As seen in
the model above, the performance of the iterations deteriorates
as the grid is refined. The typical moulii-grid (MG) philosophy
is to reduce the errors left after iteration on fine grids with
corrections on coarser grids. See [12] for a general discussion
of MG and a description of the terms used below.

A MG approach can be taken with the implicit curve network
problem. It is actually more efficient to break up the curve
blocks and perform nonlinear Gauss—Seidel iteration on the
interior equations separately, followed by an update of the
extrapolated points as in the junction iteration above. This is
followed by a recursive correction on successively coarser grids
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TABLE VII

Number of Iterations to Convergence for a Single
Time Step k& Using MG Iteration

N = 1/h k= 0.01 k=004 k=10.16
g 2 4 15
16 3 4 13
32 3 4 13
64 3 4 13
128 3 4 13

using the FAS technigque with V-cycles. The performance of
the method is shown in Table VII and is much superior to the
junction iteration method. Convergence level is 1077 as before.
Note that for fixed k the number of iterations is independent
of N as expected from MG theory. The deterioration of the
method for large time step size can be rectified by the use of
W-cycles (more appropriate when the initial guess is far from
the discrete solution) although for reasonable time steps the
use of V-cycles is more efficient. A technical detail that makes
the Gauss—Seidel iterations very efficient is that the two compo-
nents of X are decoupled at each grid point since the “‘diffusion
matrix”’ is diagonal and centered differences are used for first
derivatives (a point similar to that discussed [12, p. 184]).

7.4, Comparison of Solution Techniques

For N = 16 and k = 0.04 (*‘reasonable’ values) the computa-
tional times (in SPARC-2 seconds) to reach 107 accuracy were
0.20, 2.41, and 0.05 for the sparse Newton, junction iteration
and MG methods, respectively. For larger networks the compu-
tational time will grow linearly with the number of curves for
all three methods (with some additional overhead in the sparse
Newton technique to handle the coupling between the many
junctions), assuming the same discretization level for each
curve. [t appears that the MG method gives the best performance
for the implicit network problem. It is rather unusual to use a
MG method on a problem with dependence on only one space
variable: in this case the use of a MG method allows us to
efficiently handle the coupling of the curves at the junctions.

8. OTHER TYPES OF JUNCTIONS

We describe other types of junctions for curve networks that
are suitable for our tracking techniques.

8.1. Eutectic Media Model

In lamellar eutectics two solid phases grow into a liquid
phase [28, 13). As in [1] we model this process by considering
two curves (the solid-liquid interfaces) meeting at a point with
a prescribed angle, moving normally with given speed equal
to a constant ¢ plus the curvature term from before. As the two

curves evolve, the locus of the meeting point traces out a third
curve (the solid—solid interface) that should maintain a fixed
angle with the solid-liquid interfaces at the meeting point (see
Fig. 19). We assume that the solid curves meet the domain
boundary normally and that the junction angles are symmetric
for simplicity. We consider two curves x(o, f) parametrized as
before on a fixed interval [0, 1] in ¢ but here we run the
parametrization from left to right for both curves. The governing
equations are

il

i
o Xy

xi= TR (24)
where (a, BY' = (—b, a). At the junction we have
21, 0 =xM0,0 = cip) 25
wfl) X0 1
Lol 20,9 2 z0)
en) x0,0 1 o7

[e@] 0.0~ 2

This is a simplified model since it ignores important nonlocal
effects on the interface motion. However, the implementation
of the junction condition is of interest here and an appropriate
method is presented below. A short-time existence result for
this problem was proved in [1]. We proceed as in Section 3
and discretize the interior equations with second-order differ-
ences and handle the junction by second-order extrapolation
as before. The details are interesting enough that we present
them below.

Liquid

Solid 1 Solid 2

FIG. 19. Eutectic interfaces separating solid 1, solid 2, and liquid phases.
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~e Xij1

FIG. 20. Details of the discretization near the eutectic junction.

In this case, a regular (i.e., non-staggered) grid is used as in
Section 6.2 with N points on each curve with spacing A =
1/N. We take X} := C to be an unknown, not to be determined
by extrapolation. The value can be used to complete the stencil
for the evolution of X3 to satisily (25). To evolve the point C
we need the extrapolated value X3,,,. This situation is shown
in Fig. 20. We can approximate x2 at the junction with one-
sided differencing of known points

(—$ X3 +2Xi —30)h.

This determines an approximation of direction é, (see Fig. 21)
which using (26} and (27) determines é,, p, f; and é;. Now
{(26) is approximated using

A

= e,

1 — vI
XN+1 XN*]

DXy ==,

or
Xhoy = Xjoy + 2haé,, (28)
where o = |D,X}| must be determined. Using (27) we see that
¢ = ey, (29)

where 8 must also be determined. Since C is a point on curve
1 its motion can be described by (24). We use a second-order
discretization of (24) to approximate € in (29) o obtain

D, X} (DXt R
+a = 3¢,
DxE oy TP
P1 éo
-€; R
D3

_é3

FIG. 21. Unit directions near the eutectic junction: & is the tangent of
curve 1,  is the normal of curve |, & is the tangent of curve 2, &; is the
direction of €, and p; is orthogonal to &;.

This can be written

X.]V—l —-2C+ Xflv+l

ah?

+ ap, = Bé;.

We substitute (28) into the above equation and take the inner
product with j; to obtain the following quadratic equation for o

1 -
2X5-, — O)- Py +gél Pyt + @y - pr’ = 0.
IS h
The appropriate root of the above equation (consider & as a
perturbation term) can be used in (28) to complete the extrapo-
lation.
The discretization is tested on the problem with initial data

No,0) = (or— 1,%(1 —{oc—1)» +isin2(mr))

1
x ,0)=( ,——— (1 — {1 — 2).
@0 = (e -0 - o)

The initial data and solution at time 1 is shown in Fig. 22
(with the time history of the junction, representing the division
between the solids | and 2). In “‘real”” eutectics, the interest
is in parameter regions where the interface oscillates.

A numerical convergence study is carried out and the results
are shown in Table VIIL Second-order convergence is clearly
seen. It should be noted that the discretization used for this
problem is *‘lopsided’’; i.e., it handles the left and right curves
differently at the junction, even though they appear in the same
manner in the description of the problem. The authors believe
this is necessary to make sense of junction extrapoiation for
this problem. Naturally, when the roles of the curves are ex- -
changed, the scheme converges to the same solution,

8.2. Nonlocal Model

Consider a collection of disjoint closed curves I, in the plane.
Under curvature motion they will tend to circles that will shrink
to points in finite time [9, 11). However, if the normal velocity

TABLE VIIL

Estimated Errors and Convergence Rates
for Eutectic Computations

N=1/h - Pa
8 0.6542e-3
16 0.2471e-3 1.38
32 0.7749¢-4 1.67
64 (1L.2157e-4 1.85
128 0.5705e-3 1.92
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Eutectic Evolution
T= @ .9206e

Eutectic Evolution

T= 1.000@

FIG. 22. Eutectic media example computation at 1 = Q and = L.

is modified from the curvature x to ¥k — x,, where k, is the
average curvature defined below, then the total area enclosed
by the curves remains constant. This type of motion is obtained
as a limit of a nonlocal model of binary alloys [19, 2}. The
length of a curve I, is denoted {[]. Let |T| be the total length.
The average curvature is defined as

1
K, _mﬁi:jri'(ds'

A discrete scheme to model this problem is set up as before,
using approximations to x(g, 1) = (i, U) that parametrize the
curve I for & € [0, 1]. We use the approximations

N
ITi= k2, ID.X] (30)
£
[, cds = > P oy 3D
; ras= i=1 }DlX;l’Z i
N
Ai= —h D, DUFV, (32)
j=1

where h = 1/N and A; is the area enclosed by the curve T,
Note that the above formulas are trapezoidal rule approxima-
tions (using finite difference approximations of derivatives) of
the corresponding integrals transformed to a ¢ parametrization.
Equation (32) also represents the polygonal area of the dis-
crete curve,

When the approximations (30) and (31) are used to approxi-
mate the average curvature x, the discrete equations become

DiX; (DX

Xi= . .
'TIoxE ]

An example calculation with two curves is shown in Fig,
23. One of the areas grows at the expense of the other. The

approximate total area for this computation is shown in Fig.
24 we see that discrete area is kept approximately constant. In
fact, at the semi-discrete level, the above discretization exactly
preserves discrete area as defined above (this can be shown by
direct substitution and some summation by parts). The jumps
in Fig. 24 are due to regridding.

Unlike the case of simple curvature motion, curves moving
with the nonlocal term can cross or self-intersect (see {2] for
an explicit example). Tracking methods in this case become
less useful, because censtant checking for changing topology
is needed and when this is detected some nontrivial surgery
must be done. Other authors are working on extending the
more appropriate level set methods to this case [21]. However,
questions about the existence and location of steady-state solu-
tions of a single curve in bounded domains (where the area
conservation is preserved if the curves meet the boundary nor-

T= 9. 2geq T= B.2500
T= ?9.5809 T= 8.7999

O O

FIG. 23. Nonlocal model calculations.
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FIG. 24. Discrete area for nonlocal calculations.

mally) can be more easily addressed with this tracking tech-
nique. This is an area of current research.

9. SUMMARY

A numerical method is presented for tracking curve networks
moving with curvature motion and meeting at several types of
junctions, the principal example being triple junctions with
prescribed angles. The evolution is uniquely determined until
one or more curves shrink to zero length (singularity). At this
time, surgery of the curve network can be performed based on
physical ideas from the particular phase model under consider-
ation to continue the computation. We present lists of generic
singularities that we conjecture are complete.

The method is shown to be linearly stable and second-order
accurate, with some minimal loss of accuracy at times of singu-
larity and surgery. We compare our spatial discretization to
others and find that it is more accurate. We also present two
methods to implement implicit time stepping that are more
efficient than those currently used.

Finally we extend our numerical method to curve networks
connected with eutectic junctions as well as curves that interact
through nonlocal area preserving effects.

Further work suggested by the results of this paper includes
an investigation of the singularities in curve networks. What
is the structure of the solution at singularity in our parametriza-
tion? Can one prove that our list of generic singularities is
complete? Does the curve reconstruction proposed here corre-
spond to the asymptotic limit of the continuous reaction-
diffusion model? These are some of the questions that should
be answered. In addition, the more efficient time-stepping tech-

niques proposed here may make statistical studies of the type
undertaken in [8] with a larger number of grains feasible.

APPENDIX: LINEAR STABILITY

We consider the frozen coefficient linear stability of our
semi-discretization methed applied to a network of three curves
with a triple junction (for simplicity we consider symmetric
angles of 120° at the junction). The linearized boundary condi-
tions for the continuous problem satisfy the appropriate determi-
nant condition that guarantees a unique, smooth solution [23,
1]. For our type of discretization the boundary conditions must
also satisfy another determinant condition that we describe
below. General sufficient conditions for stability of fully dis-
crete finite difference methods applied to constant coefficient
linear problems of this type are given in [27] and these results
can be used to show the stability of our discretization. We
present an alternate technique below.

Structure of the Problem

The equation corresponding to linear perturbations % of a
solution x' of curvature motion (1) is
Koy o) - T,
&

= -
' i f*

This equation is of convection—-diffusion type and marches the
linearized discrete implicit equations from Section 7.1. We
consider a six-tuple vector u to describe the two components
of the three curves of the linearized version of (1),

u, = Ao, by, + Clo, Du, + £ (33)

where A is a diagonal matrix with positive entries
R At R e

At the junction, which we take to be at o = () now, the linearized
versions of (4)—(6) are Bu(() = g" and Bu,(0) = g', where
the notation of Varah [27] is used. The g’s are data for the
boundary conditions. By has rank 4 and corresponds to the
Dirichlet part of the boundary conditions and B, has rank 2
and corresponds to the Neumann part of the boundary condi-
tions. The explicit forms are

I -1 0
B,:= ( )
o I -I

(0 Ax2V3 3)c] V3 0 0 )
0 0 =3l V3R -3l V3Rl

L

1-=

where / above denotes the 2 by 2 identity matrix and the form
of B, is that obtained after suitable coordinate rotation at the
triple junction.
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As is typical when considering this type of problem or a
discretization of it, we consider first only the highest order term
in (33) with frozen coefficients from the junction at a fixed
tirme; we further simplify the problem by neglecting the other
(domain} boundary and let ¢ € [0, %) (the analysis of the
linearized domain boundary conditions are considerably easier
than those at the junction). The discretization of this reduced
lingar problem is

U=ADU + f (34)
forj > 0 on a staggered grid and with A a constant. The discrete
boundary conditions are

B\ FU, = g" (35)

and

BD'U; = g, (36)
where B, and B, are also constant in time. The discrete boundary
conditions are used to eliminate Uy in terms of U, (extrapola-
tion). We show the stability of this frozen coefficient linear
discrete problem below.

Two Determinant Conditions

In order for the continuous linear problem (33) above to
be well-posed, the following determinant condition must be
satisfied [23]:

BIA—IIZ(O)
det ( ) #= 0 (37

Bi)

This condition is shown to be satisfied in [1] for our problem,
provided the parametrization of the curves is not singular at
the junction (i.e., |x,/ 5 O for any curve) during an existence
proof for the nonlinear problem.

A second determinant condition arises from the discretiza-
tion. If we want to consider the boundary conditions (35), (36)
as a way to derive an extrapolation of U, to U, then

Bn fBg Zg"
(a) o= (o) o ()
B| B[ _hg”

and the following additional determinant condition must be met:

By
det ( ) #= Q0.
B,

An explicit calculation shows that our problem also satisfies
this condition (which we suspected since the extrapolation for
the nonlinear problem at the triple junction is always well

(38)

defined). In cases where this condition is not met but the more
fundamental previous condition is satisfied, other discretiz-
ations of the boundary conditions can be performed [27].

Stability Result

We consider now the stability of the reduced linear model
problem above. The stability results are obtained using Laplace
transforms in time and /, estimates in space (with norm |-,
on suitably ‘‘rotated’’ variables. This is essentially a discrete
version of the estimates found in [15]. The ‘‘trick’ in the
discrete setting is to choose the correct combination of time
derivatives and discrete space derivatives (see (46)—(49) be-
low). We denote the Laplace transform of U(r) by U(s). Note
that since U is an “‘error,” U(0) = 0 and so U = sU.

We consider s = 0 + i£ with 5 > 0 and sufficiently large
and A sufficiently small. We will derive the energy estimate on
the transform (the proof will be given in a separate section
below).

Lemma 1 (Constant coefficient, linear stability). The Laplace
transform of the discrete solution of (34)—(36) with U(0) = 0
obeys the estimate
2+ 7B (39)

1013 =

where K is independent of h and 7.

Using a version of the Plancherel theorem and a ‘*future does
not affect past’” argument in [15] the result of this lemma gives

[Tl =can [ dak + 1B (40)

This is a weak bound on the solution in terms of the data similar
to that proved in [27]. When we consider f and g to be the
second-order truncation errors from our discretization, it shows
the second-order convergence of our method to the reduced
linear problem in this integral sense.

The stability result can be extended to the following addi-
tional cases:

1. To A(o) (not necessarily diagonal) where A satisfies
A + A* = &I, where & > (). Both determinant conditions (37)
and (38) must be satisfied.

2. To the case where lower order terms C{o)u,, and D{o)u
are included. The same determinant conditions are required in
this case.

3. To problems on a finite spatial domain where there is a
second boundary condition which also satisfies the determinant
condition (this is true of the linearized domain boundary con-
dition).

4. To the case where lower order Dirichlet terms are in-
cluded in the Neumann boundary conditions.

However, the extension to time-dependent coefficients and the
full nonlinear problem has not been done (this is also not done
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in [27]). A straightforward technique of dominating the problem
with time-dependent coefficients locally with the time-indepen-
dent problem (as is done in [23]) is not possible because the
estimates here and in [27] are too weak. We remark that with
more work the estimates in (40) can be improved to estimates
on differences of the error I/. In future work we plan to prove
a short-time convergence result for the nonlinear probler using
these estimates combined with the asymptotic error analysis of
Strang {25].

Proof of Lemma 1. To ease the details of the proof we take
A = [ The more general case can be obtained by modifying
the arguments below in essentially the same manner as done
in [15). We define

p="Vs
and
=V1 + pi/a

so that the argument of the above quantities has absolute value
less than @/4. The following lemma of simple relationships
between y and p is stated without proof:

Lemma 2. The following estimares are valid for all s with
Res> land h < 1:

<Pl <bpe
2 el 2 ol

7 I lel

4

l\.)l’«v-J

Re(y*p) > (42)

After Laplace transformation, the discrete equations (34)
become
0 =D,0+Ff (43)

Some useful facts relating difference operators are listed
below for reference,

. h3 .
RFU, — D, U,
v 4

»

v0i— 7]

(44)

®D. U = DU, (45)
where in (44) the discrete equation (43) has been used. Here,
% and D_ denote backward averaging and differencing, respec-
tively.

We define the following quantities:

(46)

w!=%0,+1D.0, (47)
P
ol =0~ XD0, (48)
p
al=0,+¥p0. (49)
fo

The following results follow from the definitions of w and «
and (44), (45):

Bw! = Yol — %f (50)
D-w?= —ypa! + %ff. 51)
Bw} = yla] = %f (52)
Dow! = pa! — %f (53)

We define the following sums § and § of inner products in £

$:
3

(Bw®, D_w + (Dw®, Bw?)
—(Bw!, D_w"y — (D_w', Bw').

The first estimates from these sums will be derived from the
four relationships (50)-(53),

+ bl ) 7 e

5= Retrphtk « (24 22

which after the use of (41) and (42) and then appropriate esti-
mates of the cross terms (2ab = ga* + £7'5%) becomes

(34)

3
$ = — Cry'pladlf + C% f

Here we use shorthand p for |p| and -y for Jy|. The constants
C, and C, are independent of & and s, assuming Re s > | and
h < 1. Similarly,

2
§= -Ciple|P + c% I71P- (55)

We now use simple summation by parts to get estimates of §
and $ from the boundaries:

(%W, D—w)= %2 (lwill - |W:'—I|2) + %Z (wiw,_, — wEow,).
i=1 i=1

(56
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Assuming a semi-infinite spatial domain with appropriate decay
in the solution as x goes to o, this formula can be combined
with the complex conjugate term as in % to give

g = f\wﬂlz (57
and, similarly,

(58)

In terms of w the boundary conditions (35) and (36) become

—Bl Bl 2_')’ I
g
wi + wi=| P
B, B,

(59

or
B (/e [P
wi = whi—1{ P
_BU By 23”

It is at this step that the determinant condition (37) which in
this case of A = [ coincides with (38) is needed. We use (41)
to show that the factor y/p can be neglected in (59) and so
we obtain

wi* < clwil* + Clgf"

(60)

We combine (54), (55), (57), (58), and (60) to get

|Hf 0|2 - C

g =9 +df = —Covpllalt + cfg’—jnfna 61)

where d > 1 + 2¢ and |aff = [|a” + |a'[. We note that
20 = a® + o' and we can use the estimate (61} to obtain

- K . K s
[0F =25 1gF + S 7t

Since p > | and ¥ > 1 by assumption on s we obtain the result
of the stability lemma (39)
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